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Abstract

A principle possibility of second harmonic generation (SHG) from the surface of a chiral medium by normally incident focused fun-
damental beam has been shown earlier, and the key features of this phenomenon (forbidden in a planewave approximation) have been
outlined in [N.I. Koroteev, V.A. Makarov, S.N. Volkov, Laser Phys. 8 (1998) 532–535]. In our work we have obtained analytical expres-
sions, which describe the distributions of intensity and polarization in the cross-section of a second-harmonic (SH) light beam. It is found
that the polarization state drastically changes along the cross-section of the signal light beam. The polarization effects concerning the
transversal inhomogeneous polarization distribution were studied in detail. It is shown that the measurement of the polarization state
in certain areas of the SH beam cross-section gives us quantitative information directly about the medium material constants.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Surface second harmonic generation (SHG) is very often
used as a tool for the investigation of complex organic mol-
ecules, which are located in surface layers or in thin films.
The conditions of the appearance of second harmonic (SH)
signal and the methods of detection of the response pro-
vided by the chiral properties of the molecules are well
known and described in the literature [2–7]. Various
schemes of SHG and ellipsometry of light at double fre-
quency are continuously being improved. These are used
for various applications such as surface diagnostic and
spectroscopy studies [8–12], and in the control of film
growth [13]. Modern spectroscopic studies analyze the
rotation of the polarization plane of SH, the difference
between the intensities of its linearly (or circularly) polar-

ized components [14–16], and develop and improve the
methods of separation of the signal at double frequency
provided by the medium chirality [17].

In theoretical studies carried out within the framework
of planewave approximation the authors made attempts
by different ways to take into account the spatial dispersion
of a nonlinear optical response of a chiral medium [18–21]
as well as the surface layer inhomogeneity of the medium
optical properties [22], and also to find ways of experimen-
tal separation of bulk and surface contributions in the SH
signal [23]. The interconnection between the orientation of
the molecules at the surface and the characteristics of the
generated SH was also studied [24].

It is necessary to remark the importance of considering
the spatial finiteness of light beams in their reflection from
the border between two media. Already a long time ago it
has been shown, that the effects having the first and the sec-
ond order on the incident beam divergence angle give small
(but essential) corrections to the laws of geometric optics
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for the reflection and refraction of light beams (both for
2D-beams [25] and 3D-beams [26]; see also Refs. 1–7 in
[25] and experimental work [27]). Also these effects are
responsible for the changes of the intensity and polariza-
tion distributions in the reflected and refracted beam
cross-sections. Intense research in this area is also contin-
uing presently [28–30]. In particular, these effects play a
special role when the reflected signal is absent within the
planewave approximation (when the incident beam is
polarized in the plane of incidence and the incidence angle
is equal to the Brewster angle).

For the first time the authors of [1,31] have taken into
account the spatial finiteness of fundamental and signal
light beams in SHG from the surface of a nonlinear med-
ium with a spatial dispersion of quadratic nonlinearity in
their studies of intensity and polarization of the signal
wave at double frequency. In [31] the oblique incidence
of two-dimensional Gaussian beam (slit beam) has been
considered, and the normal incidence of three-dimen-
sional Gaussian beam has been studied in [1]. The optical
inhomogeneity of the surface layer of a nonlinear med-
ium has been taken into account by means of modified
border conditions for electromagnetic fields. The substan-
tiation of reasonableness of such an approach has been
presented in [32,33]. It is necessary to remark that in
the case of the normal incidence of a fundamental beam,
SHG is forbidden within the planewave approximation.
That is why in [1] the main attention had been paid to
the question of possibility of SHG and calculation of
characteristics of its intensity and power, using the for-
mula obtained for the spatial Fourier-image of the
reflected wave on double frequency in the far field zone.
In general case this Fourier-image depends on the non-
local optical quadratic susceptibility ĉð2Þ of the medium
(because local susceptibility v̂ð2Þ of the medium bulk
becomes zero in the case of SHG (unlike in sum-fre-
quency generation)) and the surface optical quadratic sus-
ceptibility ĵð2Þ. Tensors ĉð2Þ and ĵð2Þ describe the spatial
dispersion of quadratic optical response of the medium
and the nonlinearity of its surface correspondingly. The
spatial transversal distribution of polarization of SH radi-
ation has not been studied neither in this work nor later.
The only exception is the illustration for the simplest case
of linear polarization of the incident wave, which is con-
sidered in [1].

The transversal polarization distribution in the signal
beam in the three-wave mixing processes can be very spe-
cific and deserves to be explored in detail. This is already
confirmed by the results of [34], where the investigation
of the transversal distribution of polarization in a sum-
frequency beam has been performed for the process of
sum-frequency generation in a bulk of isotropic gyrotrop-
ic medium by two collinear elliptically polarized Gaussian
beams. It has been shown [34] that all the parameters of
light field, namely, the intensity I(r,u,z), the ellipticity
degree M(r,u,z) and the angle of rotation w(r,u,z) of
the main axis of the polarization ellipse, the angle

U(r,u,z) of orientation of the electric field vector at fixed
timing (indicating the phase difference along the beam
cross-section) essentially change in the transversal dimen-
sion of the signal beam, depending on the polar angle
coordinate u. The appearance of the last parameter
U(r,z) for spatially finite elliptically polarized light beams
is caused by the inhomogeneity of oscillation phase distri-
bution for the electric field vector, which is not the case,
of course, for the plane wave.

The other reason promoting these studies of inhomoge-
neous polarization distributions is the possibility of their
spectroscopic applications. It is generally recognized that
the values of the components of material tensors character-
izing the quadratic optical nonlinearity of the surface and
spatial dispersion of optical nonlinearity of medium bulk
are more easily obtained if one is analyzing the dependen-
cies of the SH polarization on the parameters of the polar-
ization of the incident wave and on the nonlinear medium
constants rather than the dependence of the SH intensity
on the same quantities [10, 15–17]. But even precise analy-
sis of the polarization dependence performed in [9] for an
achiral medium can give values of relation of certain com-
ponents only in the absence of spatial dispersion of bulk
nonlinearity. The measurements of the relative intensities
of circularly or linearly polarized components of the SH
signal in a number of cases lead to a complex system of
nonlinear algebraic equations, which does not always allow
the convenient extraction of the information about the
components of ĉð2Þ and ĵð2Þ.

The analysis of the transversal inhomogeneous polariza-
tion distributions and their dependence on the parameters
of incident light and the nonlinear medium constants in
terms of M(r) and w(r) (and, possibly, even U(r)) provides
an alternative and effective method of extraction of the
information about the nonlinear susceptibilities of the bulk
and the surface of the medium.

In this work we present the results of the studies of the
formation of inhomogeneously polarized light beam at
double frequency generated in reflection from the surface
of a chiral medium in the case of a normally incident
focused fundamental elliptically polarized light beam with
a Gaussian intensity profile. The graphics represented by
means of the analytical formulas obtained in this work
illustrate the drastic changes of the polarization state along
the cross-section of the signal beam.

2. Analytic solution of the problem

Let us consider (as in [1]) that an elliptically polarized
broad Gaussian beam (with effective waist size w >> k,
where k is the light wavelength) normally falls on the sur-
face of the medium (z = 0)

E1ðr; z ¼ 0Þ ¼ eE0 expf�ixt � r2=w2g: ð1Þ
Here E0 is the scalar amplitude of the light field, e is the

unit complex vector defining the polarization state of the
incident radiation, in general case, jej2 ¼ 1. Its specific form
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depends on the orthogonal basis, which is used in a given
task. We assume that the waist of the beam is located at
the surface of the medium. The phase and the polarization
of the incident beam are uniformly distributed in its cross-
section.

As the source for our further considerations we use the
formula for the transversal component of the Fourier-
image of the reflected light field at double frequency found
in [1] (if the incident wave is given as (1))

~E2xðk2x?; z¼ 0Þ

¼ w2E2
0

xð1þ n1Þ2ð1þ n2xÞ
�ðb1n2xþ ic0=n2xÞðe � eÞk2x?f

þ 2n1ðk2x? � eÞ b3e� b5½ez� e�½ �gexpf�2ixt�w2k2
2x?=8g;
ð2Þ

where k2x? is the transversal part (lying in the xy-plane) of
the wave vector k2x of the SH, n1 and n2x are the refraction
indexes at frequencies x and 2x, respectively, b1 ¼ jð2Þzxx,
b3 ¼ jð2Þxxz and b5 ¼ jð2Þxyz are three of the four independent
components of 3rd rank tensor ĵð2Þ, which characterizes
the quadratic optical response of the surface with symme-
try 1. This tensor has permutation symmetry in its last
two indexes as a consequence of pump wave frequency
degeneration. c0 ¼ xcð2Þxxyy is proportional to one of three
independent components of the 4th rank tensor ĉð2Þ, which
is responsible for the linear spatial dispersion of the qua-
dratic optical bulk susceptibility of chiral medium (symme-
try 11) [1,31–33].

In order to obtain the spatial distribution of light field in
the reflected beam at double frequency, it is sufficient to a
perform reverse Fourier-transform of (2). Taking into
account the dependence of the SH light field on the propa-
gation coordinate z within the framework of parabolic
approximation, this spatial distribution is given as
following:

E2xðr; zÞ ¼
Z Z

~E2xðk2x?; z ¼ 0Þ expfik2x?r � ik2xz

� izk2
2x?=2k2xgdk2x? ð3Þ

Constituting (2) in (3) and carrying out double integra-
tion, we obtain

E2xðr; zÞ ¼
1

b2ðzÞ
32piE2

0

w2xð1þ n1Þ2ð1þ n2xÞ
� �ðb1n2x þ ic0=n2xÞðe � eÞrf
þ 2n1ðr � eÞ½b3e� b5½ez � e��g
� expf�2ixt � ik2xz� 2r2=w2bðzÞg; ð4Þ

where bðzÞ ¼ ð1� 4iz=k2xw2Þ.
In principle, formula (4) describes the electric field trans-

versal distribution in the SH beam for both absorptive and
non-absorptive media (for example, in far-off-resonance
and in near-resonance cases). But further, for simplicity,
we consider only non-absorptive media with real values
of n1, n2x, b1, b3, b5 and c0, though results of our work

show that the same studies can be performed as well for
absorptive media with complex material constants.

It is convenient to describe the SH light field considered
in this work by the normalized intensity I ¼ ðjEþj2þ
jE�j2Þ=2, the ellipticity degree M ¼ ðjEþj2 � jE�j2Þ=
ðjEþj2 þ jE�j2Þ and the rotation angle W ¼ 0:5 argðEþE��Þ
of the polarization ellipse, and also by the angle
U ¼ argðEþ þ E��Þ between the electric field vector and
the axis x of the coordinate system at fixed timing t =
k2xz/2x. Of course, consideration of this parameter makes
sense only if we are considering not a plane wave, but finite
light beams. The expressions for these four parameters
defined above contain E± = Ex ± iEy, which are the com-
plex circularly polarized amplitudes of the light wave.
Remarkably, �1 6M 6 1. M = ±1 corresponds to the cir-
cular polarization states (with left or right rotation,
depending on the sign of M), and M = 0 corresponds to
the linear polarization. With these definitions of the ellip-
ticity degree and the angle of rotation of the polarization
ellipse it is reasonable to define the polarization vector of
the fundamental wave as the following:
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þM0Þ=2

p
� eiW0 e� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�M0Þ=2

p
� e�iW0 eþ, where

e� ¼ ðex � ieyÞ=
ffiffiffi
2
p

, where ex,y are the unit vectors in
x- and y-axes positive directions. In this case M0 is the
ellitpicity degree of the polarization ellipse of the incident
wave (correspondingly to our definition) and can be varied
in the range of �1 6M0 6 1. Since the medium is symmet-
ric with respect to any rotation around the axis of the inci-
dent beam, the angle of rotation w0 of the polarization
ellipse of the incident wave can be taken equal to 0. At that,
the polarization vector of the incident radiation will look as
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þM0Þ=2

p
e� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�M0Þ=2

p
eþ .

By using (4) it is not difficult to obtain the following
cumbersome expressions for normalized intensity, elliptic-
ity degree, angle U in the cylindrical coordinate system with
coordinates r, u and z

Iðr;u; zÞ ¼ 0:5 jDðr; zÞj2½4n2
1ðb2

3 þ b2
5Þ þ ð1�M2

0Þ
� ð2ðn2

2xb2
1 þ c2

0=n2
2xÞ � 4n1n2xb1b3Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
f½4n2

1ðb2
3 þ b2

5Þ � 4n1n2xb1b3

þ 4n1b5M0c0=n2x� cos 2uþ ½4n1n2xb1b5

þ 4n1b3M0c0=n2x� sin 2ug� ð5Þ

MðuÞ ¼ ½M0n2
1ðb2

3 þ b2
5Þ þ ð1�M2

0Þn1b5c0=n2x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
f½M0ðn2

1ðb2
3 þ b2

5Þ � n1n2xb1b3Þ
þ n1b5c0=n2x� cos 2uþ ½M0n1n2xb1b5

þ n1b3c0=n2x� sin 2ug� � ½n2
1ðb

2
3 þ b2

5Þ
þ ð1�M2

0Þðn2
2xb2

1=2þ c2
0=ð2n2

2xÞ � n1n2xb1b3Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
f½n2

1ðb
2
3 þ b2

5Þ � n1n2xb1b3

þ n1b5M0c0=n2x� cos 2uþ ½n1n2xb1b5

þ n1b3M0c0=n2x� sin 2ug��1 ð6Þ
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WðuÞ ¼ 0:5Arg

8><
>:ð½n1ðb3 � ib5Þ � n2xb1�2 þ c2

0=n2
2xÞ � expð2iuÞ

þn2
1ðb3 � ib5Þ2 � expð�2iuÞ

þ 2n1ðb3 � ib5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q ½n1ðb3 � ib5Þ � n2xb1 þ iM0c0=n2x�

9>=
>;
ð7Þ

In formulas (5), (6)

Dðr; zÞ ¼ 1

b2ðzÞ
16

ffiffiffi
2
p

p iE2
0 expð�2ixt � ik2zÞ

xw2ð1þ n1Þ2ð1þ nSHÞ
r

� expf�2r2=w2bðzÞg;

x = rcosu, y = rsinu. We should notice, that formula (7)
makes any sense only if M0 6¼ �1 .

It can be seen from (5)–(7), that M and w do not depend
on the propagation coordinate z and the transversal coor-
dinate r. The expression for the angle U between the electric
field vector and the x-axis of the coordinate system at fixed
timing for arbitrary values of z is very cumbersome and
non-informative. This fact is circumstanced by the para-
bolic phase accumulation due to the traveling in the linear
medium. At z = 0 this expression has the following form:
Uðu; z ¼ 0Þ

¼ Argf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
� ðc0=n2xÞ � expðiuÞ

þ iM0n1ðb3 � ib5Þ expð�iuÞg ð8Þ

3. Discussion of results

The expressions (5)–(8) give full information about the
distributions of intensity and polarization in the transversal
section of the SH beam. It can be seen from these, that
I(u), M(u), w(u) U(u) are, of course, the periodic func-

tions, but I(u), M(u), and w(u) have a period of p, and
U(u) has a period of 2p. It is easy to show that the direc-
tions of the electric field vector in any two diametrically
opposite points of the cross-section of the beam at fixed
timing are opposite to each other. That is why the polariza-
tion structure of the SH beam is symmetric to 180�-rota-
tion. Taking this in mind, we analyze I(u), M(u), w(u)
and U(u) only for 0 6 u 6 p.

All the four quantities (5)–(8) essentially depend on the
constants characterizing the spatial dispersion of quadratic
optical response of the nonlinear medium and the surface
nonlinearity, and also on the polarization of the incident
radiation.

Fig. 1a shows the example of inhomogeneous distribu-
tion of the intensity and the polarization of the SH light
field (in dimensionless units x1 = 2x/w and y1 = 2y/w) in
terms of the polarization ellipses in separate points of the
cross-section of the SH beam at z = 0 (nearby the surface)
in case of elliptic polarization of the incident radiation.
The sum of squared axes of each ellipse is proportional
to the intensity of light in the point, given by the center
of the ellipse (at radius-vector r), the relation of the axes
of the ellipse can be unambiguously expressed through
the M(r), and the inclination angle of the main axis of
the ellipse is equal to w(r). The orientation of the electric
field vector at fixed timing in the point given by r is shown
by the small circle at the boundary of the ellipse. Shaded
ellipses correspond to the clockwise rotation of the polari-
zation vector and opened ellipses correspond to the coun-
terclockwise rotation. It can be seen from the figure that
the polarization state essentially changes along the beam
cross-section, and one can find regions with linear
(M(r,u) = 0), elliptical (�1 < M(r,u) < 1) and circular
(M(r,u) = ±1) polarizations. For comparison, the trans-
versal polarization distribution of the fundamental beam
is shown in Fig. 1b. Unlike in Fig. 1a, all the ellipses are
oriented in the same way and have the same ellipticity
degree, and U(r,z) � 0.

Fig. 1. The transversal spatial distributions of light polarization in the SH beam (a) and in the fundamental beam (b). M0 ¼ 0:3, n1 ¼ 1:33, n2x ¼ 1:35,
b3=b1 ¼ 1:2, b5=b1 ¼ 0:2, c0=b1 ¼ 2.
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Using (5)–(8) it is not difficult to find that in the case of
the absence of a nonlocal bulk response of the medium
(c0 = 0), dependencies I(M0), w(M0) (for arbitrary fixed
value of u) become even functions, and M(M0) becomes
an odd function. The value of U(M0) suffers a shift on p
if the sign of M0 is changed. It is worth to notice that if
the fundamental wave is linearly polarized in this case
(i.e. M0 = 0, c0 = 0), then the SH radiation is also linearly
polarized in each point of the SH beam cross-section. At
that, the phase difference between the oscillations of the
electric field vector in each of the two points of the cross-
section can be equal either to zero or to p. Also if c0 = 0,
the I(u) and M(u) dependencies have the same coordinates
umax and umin for minimum and maximum.

If there exists a nonlocal response of the medium bulk,
the dependence of the polarization state of the SH radia-
tion becomes more complex. In this case the functions
I(M0), w(M0) and M(M0) do not possess even or odd prop-
erties, but the simultaneous change of the sign of M0 b c0

preserves the values of I(M0,c0) and w(M0,c0) and their
sign, and changes the sign of M(M0,c0) (preserving its
absolute value). The value of U(M0,c0) suffers a shift on
p under this condition. The coordinates of maxima and
minima of I(u) and M(u) are different. Even if the funda-
mental wave is linearly polarized, the SH radiation will
have an elliptical polarization in general case, and the
polarization state will be inhomogeneously distributed
along the SH beam cross-section.

Fig. 2 demonstrates the behavior of the spatial distribu-
tion of the polarization of light at double frequency near
the surface of the medium for different values of the ellip-
ticity degree of the incident wave polarization ellipse and
for fixed values of medium parameters: n1 = 1.33,
n2x = 1.35, b3/b1 = 1.2, b5/b1 = 0.2, c0/b1 = 2. In Fig. 2a
each ellipse in the horizontal line corresponding to the
given M0 (marked at ordinate-axis) shows the polarization
state and the electric field vector orientation at fixed timing
at the radial direction corresponding to the polar angle u
(marked at abscissa axis) in the beam cross-section.
Fig. 2b–d shows w(u), U(u) and M(u) for different values
of M0. The range of variation of the angle of rotation
w(u) (Fig. 2b) achieves maximum size, when M0 is close
to zero. M(u) changes very slightly if |M0| is close to 1
(Fig. 2d). Apart from this, it can be seen from Fig 2a
and d that both intensity extrema as well as both ellipticity
degree extrema are located at mutually perpendicular
radial directions in the beam cross-section (this also
directly follows from (5) and (6)).

When the incident beam is circularly polarized, the
reflected beam at double frequency is also circularly polar-
ized with the same direction of polarization rotation as in
the incident beam. In this case the transversal distribution
of intensity of the SH radiation has radial symmetry and is
proportional to ðjb3j2 þ jb5j2Þ=jb1j2, i.e. the signal wave in
this case depends only on the surface nonlinearity.

In general case, when M0 6¼ 0, the equation M(u) = 0
may have two roots, one root or no real roots. In the first

case the cross-section of the SH beam is divided by two
direct lines u = u1,2 (roots of the equation M(u) = 0)
crossing its center into four sectors in such a way that
the directions of rotation of the polarization vector in each
of the two neighboring sectors are opposite, because the
ellipticity degree changes its sign at these lines (such case
is illustrated at Fig. 1a). These lines are given by the follow-
ing expressions:

u1;2 ¼ arctg½ð�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p
Þ=AÞ�; ð9Þ

Fig. 2. The dependencies of (a) the shape and orientation of the
polarization ellipse, (b) the angle of polarization ellipse rotation, (c) the
orientation of the electric field vector at fixed timing and (d) the ellipticity
degree of the polarization ellipse on the polar angle coordinate in the
cross-section of the SH beam. Curves 1–5 correspond to
M0 ¼ �0:8; �0:4; 0; 0:4; 0:8 (curves at (c) almost coincide with each
other). n1 ¼ 1:33, n2x ¼ 1:35, b3=b1 ¼ 1:2, b5=b1 ¼ 0:2, c0=b1 ¼ 2.
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where A ¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
ÞðM0n1ðb2

3 þ b2
5Þ þ b5c0=n2xÞ�

M0ðM0b5c0=n2xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
� n2xb1b3Þ, B¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
ðb3c0=

n2x þ n2xb1b5M0Þ, C ¼ M0n1ðb2
3 þ b2

5Þ þ ð1�M2
0Þb5c0=n2x.

If B2 � AC ¼ 0 then the SH radiation is linearly polar-
ized at the direct line u = u0, where u0 = arctg[�B/A],
and the direction of rotation of the polarization vector does
not change in the beam cross-section. And, finally, in the
third case, when B2 � AC < 0, there is only an elliptically
polarized radiation at double frequency and the direction
of the polarization rotation does not change in the SH
beam.

The following two particular cases of the considered
problem are of special interest because these are connected
with possible spectroscopic applications.

If the nonlinear optical response of the surface can be
neglected ĵð2Þ � 0, then for any values of M0 the SH radi-
ation is linearly polarized in each point of the reflected
beam and the polarization plane is oriented along the
radius of the beam in each point: WðuÞjk̂ð2Þ¼0 ¼ u. Such a
radial polarization distribution in the SH beam is shown
at Fig. 3. The length of each arrow at the figure is propor-
tional to the amplitude of the light field in the correspond-
ing point of the beam cross-section. The orientation of the
arrow (equal to the orientation of the polarization plane)
coincides with the polar angle u in each point.

It can be shown from (9), that if the fundamental beam
is linearly polarized, then there are the lines u1 = p/2 and
u2 = �arctg(b5/b3) in the SH beam cross-section, where
the radiation is linearly polarized (these lines u1,2 corre-
spond to the roots of the equation M(u) = 0), and the
plane of polarization at these lines is oriented along them,
i.e. w(u = p/2; M0 = 0) = p/2, w(u = �arctg(b5/b3); M0 =
0) = �arctg(b5/b3). Fig. 4 illustrates such a case and the
corresponding lines are marked there; b5/b3 = 1 and the
inclination angle of the second line is equal to �45�. There-
fore, detecting the part of the SH beam, which is close to

the certain line crossing the center of the beam (for exam-
ple, by means of slit aperture), and choosing this line in
such a way that the polarization of the detected light is lin-
ear and the polarization plane is oriented along the selected
line, we measure the positions of these lines and the angle
between them. The result of our measurement will give us
the value of b5/b3. Further measurement of the intensity
of the SH radiation in the case of circularly polarized pump
wave will give us a combination ðjb3j2 þ jb5j2Þ=jb1j2, which
together with b5/b3 allows to simply find b5/b1 and b3/b1.

For experimental observation of the polarization effects
described above in the cross-section of the reflected beam
at double frequency (for example, the search of directions
in the beam, where light is linearly polarized, and the polar-
ization plane is oriented along the radius) it is sufficient to
use the method described in [35], where the polarization
effects in the beam cross-section were investigated for the
problem of light self-action: the radiation reflected from
the nonlinear medium passes through the polarizer, and
the resulting distribution of light intensity is measured on
the CCD-matrix. By rotating the polarizer with sufficiently
small angle step and by measuring the intensity distribution
at CCD-matrix for all the positions of the polarizer, we can
find the polarization of light in every point of the beam
cross-section, recording the values of maximum and mini-
mum intensity detected in the given point for all the orien-
tations of the polarizer and the angle of polarizer
orientation corresponding to maximum. If necessary, the
beam falling on the CCD-matrix can be resized by means
of lens or system of lenses. If one needs to measure the
intensity distributions of the circularly polarized light com-
ponents with either right or left rotation directly, the bire-
fringent plate ‘‘k/4” can be installed before the polarizer, as
in [35]. In this case the intensity distribution of the corre-

Fig. 3. Radially polarized SH beam, generated in the medium with b3 ¼ 0,
b5 ¼ 0 irrespective of the fundamental wave polarization. n2x ¼ 1:35,
n1 ¼ 1:33; c0=b1 ¼ 1.

Fig. 4. Polarization distribution in the SH beam cross-section in the case
of linear polarization of fundamental wave M0 ¼ 0 and the following
values of medium parameters: b3=b1 ¼ b5=b1 ¼ 2; n1 ¼ 1:33; n2x ¼
1:35; c0=b1 ¼ 0:5. Lines marked at the figure correspond to roots of the
equation MðuÞ ¼ 0. The SH radiation is linearly polarized at these lines,
and the polarization plane is oriented along them.
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sponding component of light can be obtained by orienting
the polarizer at either +45� or �45� for detecting the right
circularly polarized or the left circularly polarized compo-
nent. This provides an easy calculation of the ellipticity
degree distribution.

4. Conclusion

In this work we present the detailed analytical study of
the polarization effects in the cross-section of the SH beam
generated from the surface of a chiral medium by a nor-
mally incident focused Gaussian beam of a fundamental
radiation. The polarization properties of SH beam depend
only on the polar angle coordinate in the cross-section of
the beam, and the coordinate dependencies of the intensi-
ties of the circularly polarized light components are the
products of polar radius dependence and polar angle
dependence. This fact essentially simplifies the analysis of
these distributions and allows one to acquire the informa-
tion about the medium nonlinearity by selective detection
of the radiation from the certain areas of the SH beam
cross-section (along certain lines crossing the center of
the beam) and by subsequent measurement of the polariza-
tion state of light in these areas and also by search of the
radial directions in the beam cross-section, which corre-
spond to maximum and minimum of intensity.

It is shown that in the case of the absence of surface con-
tribution to the signal at double frequency or its negligibil-
ity compared to bulk contribution, the SH beam becomes
radially polarized for any polarization state of the incident
beam, and the intensity of SH is maximum if the incident
beam is linearly polarized.

The authors believe that the results obtained in this
work are promising for future applications for spectros-
copy analysis of surfaces of chiral medium or thin chiral
layers and for the methods of formation of inhomoge-
neously polarized light beams. The authors are grateful
to Dr. S.N. Volkov for valuable discussions.
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