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Abstract
In this work we study sum-frequency generation from the surface of an isotropic chiral medium
in arbitrary interaction geometry of the paraxial light beams at fundamental frequencies. The
analytical formulae have been deduced completely describing the transversal spatial distribution
of the electric field in the light beam at sum-frequency. Even in a zero-order approximation on
the divergence angles of the beams the transversal spatial intensity distribution in the signal
beam is elliptic Gaussian, and its shape depends only on the geometry of incidence, the
transversal dimensions and the frequencies of the fundamental beams.

Within the first-order approximation approach, generally, the polarization state of light is
distributed inhomogeneously in the reflected signal beam cross section, and the transversal
intensity distribution is not Gaussian. But when the fundamental beams are not focused tightly
enough, the non-Gaussian part of the field is negligibly small, compared to the Gaussian part
with uniform polarization distribution. However, at larger angles of incidence the non-Gaussian
contribution becomes comparable with the Gaussian zero-order part of the field (or exceeds it)
even in the case of slightly focused fundamental beams. In this case the transversal distributions
of intensity and polarization of light become very sophisticated.

Keywords: polarization, chirality, sum-frequency, surface, light beam, transversal effects

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Sum-frequency generation (SFG) is the efficient and well-
known method of surface diagnostics. It is widely used
in the spectroscopy of surfaces and interfaces (see, for
example, [1–3]), in microscopy [4–6], for surface plasmon
excitation [7], for the examination of the orientation of
molecules and of other objects [8, 9] at the surfaces or
interfaces. In connection with the above-mentioned problems,
some of the research has also developed theoretical models
of light interaction with the investigated molecules (see, for
example, [8, 10]). The advantages of SFG as a tool for
surface diagnostics are the possibility of application in an
atmosphere (and also at high pressures), and good spatial

precision (depending on the effective sizes of the fundamental
beam waists).

The authors of different works have made attempts to
take into account the spatial dispersion of the nonlinear optical
response of a chiral medium [11–14], the inhomogeneity of the
optical properties of the medium surface layer [15] and to find a
method of experimental separation of the sum-frequency (SF)
signal from the bulk of the medium and from its surface [16].
In [17] these problems have been overcome by the modified
boundary conditions for the electromagnetic field at the surface
of the medium. The substantiation and the details of such an
approach are described in [18, 19].

The above-mentioned achievements in SFG research have
been made mainly within the framework of the plane wave
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approximation. At the same time, the result of SFG depends
strongly on the effective size of the beam waists. From this
point of view, the account for a spatial finiteness of incident and
reflected beams seems to play a certain role. The importance of
this issue is confirmed by the investigations of linear reflection
and refraction of finite light beams. The first-order effects on
the beam divergence angle lead to small deflections of the light
beams from the trajectories predicted by geometrical optics in
the reflection and refraction of these beams (see experimental
work in [20]; also work in [21] for 2D beams and work
in [22] for 3D beams; earlier work can be found in [1–7]
of [21]). Moreover, the spatial finiteness of light beams leads
to the appearance of a small inhomogeneity of the polarization
distribution in the cross sections of reflected and refracted
beams even in linear optical processes. Intense research in this
area is also continuing at the present time [23–25]. Thus, the
account of a spatial finiteness of the light beams in SFG reveals
new interesting effects (especially concerning polarization) in
the cross section of the reflected signal beam, which may
appear to be vital in some cases for the correct interpretation
of SFG experiments.

For the first time, the authors of [26] have taken into
account the spatial finiteness of the light beams in a three-
wave mixing process. They considered the second-harmonic
generation (SHG) from the surface of a chiral medium with
spatial dispersion of the nonlinearity in the case of the oblique
incidence of a 2D light beam (‘slit’ beam) at fundamental
frequency. Later, in [27] they investigated the SHG by normal
incidence of a 3D fundamental beam. In both [26] and [27]
the authors utilized the approach, presented in [18, 19], in
order to describe the light–matter interaction. Afterwards,
in [28] Makarov and Perezhogin have deduced and thoroughly
analyzed the formulae completely describing the transversal
distributions of the intensity and polarization in the second-
harmonic beam. It was shown that the quantitative information
about the relation of the nonlinear optical susceptibilities of
the medium can be extracted directly from the polarization
distribution in the cross section of the signal beam at double
frequency. One should note that the other methods (as
a measurement of the intensity of the SF signal (or its
circularly polarized components), or measurement of the mean
polarization of the SF beam) delivering the same information,
usually result in the necessity of solving cumbersome algebraic
equations.

Thus, basing on the results of the studies of the oblique
incidence of a 2D beam [26] and the normal incidence of a
3D beam [27, 28] it can be concluded, that in the case of
the normal incidence of both of the pump beams the SFG is
forbidden within the plane wave approximation. Under this
condition the signal beam appears only owing to the spatial
finiteness (and focusing) of pump beams, as a result of the
interaction of non-collinear spatial Fourier components of the
light field. In this case, the signal beam is non-Gaussian
and it is inhomogeneously polarized, so that the polarization
state of light significantly changes at relatively small distances
within the area of the beam cross section. As for the oblique
incidence (which is the most widespread case of SFG) of real
3D fundamental beams, it can only be supposed (considering

the results of [26] for 2D beams) that, probably, the plane wave
approximation provides a good quantitative description of the
power of the signal beam and its polarization, because the non-
Gaussian part of the field is expected to be negligible compared
with the Gaussian one.

One of the main goals of our work is to answer the
question finally, when such an assumption is true, and
what are the borders of the applicability of the plane wave
approximation in this task? In order to completely solve
this problem we need to obtain an analytical formula, fully
describing the transversal distribution of the electric field in
the reflected beam at SF in the case of SFG by oblique incident
elliptically polarized beams. In certain cases the results of this
study may prevent researchers from a wrong interpretation of
experimental data, obtained as a mean value of the polarization
of radiation at SF. Moreover, as was found in earlier studies
of SHG and SFG in chiral media [28, 29], the attractiveness
of the solution of the discussed problem is provided by the
appearance of the new polarization effects in the signal beam
cross section, which potentially can give more information
about the investigated chiral medium.

2. General description of the solution of the problem

The reflected signal beam at the SF appears due to the nonlinear
optical response of the surface and due to the nonlinear (local
and nonlocal) optical response of the medium bulk (that is,
due to the nonlinear polarization of the medium provided by
the refracted fundamental waves). Various approaches can
be used in order to correctly describe all the contributions
from the surface and from the bulk. We use the method,
described in [18], which utilizes the so-called modified
boundary conditions for the electromagnetic field. The latter
are obtained by the solution of the Maxwell equations for the
monochromatic wave at frequency ω = 2π c/λ (c is velocity
of light in vacuum and λ is the wavelength of light) in the
inhomogeneous surface layer of the nonlinear medium. These
equations are solved within the first-order approximation on
d0/λ, where d0 � λ is the effective thickness of this layer:

Etan(2) − Etan(1) = 4π

iω
gradtan(in),

Dn(2) − Dn(1) = 4π

iω
div(itan),

B(2) − B(1) = −4π

c
[n × itan],

(1)

where E(2), D(2) and B(2) are the values of the electric field,
the electric displacement and the magnetic field at the surface
inside medium 2, and E(1), D(1) and B(1) are the values of
the same quantities at the surface inside medium 1. Indexes tan
and n designate tangential and normal components of vectors
in (1); n is the unit vector, perpendicular to the surface, directed
from medium 1 to medium 2; i can be interpreted as a surface
current density of the bounded charges. i is proportional to the
first order of d0/λ. In our case, when medium 1 is a vacuum,
we can represent i as the following series:

i = κ(1) · Ev + κ(2) : EvEv + κ(3)
...EvEvEv + · · · (2)
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where Ev is the electric field at the surface in vacuum, and
tensors κ̂ (n) characterize the surface response on the external
electromagnetic field. κ̂ (n) are the material tensors: they do not
depend on the angles of incidence and on the other parameters
of the electromagnetic waves.

Because we consider the quadratic nonlinear optical
response, the expressions for the nonlinear surface current
density and for the nonlinear polarization will be given as
follows:

i NL
j = κ

(2)
jkl E

v
1kEv

2l

PNL
i = χ

(2)
i jk Et

1 jE
t
2k + γ

(2)1
i jkl

∂Et
1k

∂x j
Et

2l + γ
(2)2
i jkl Et

1k

∂Et
2l

∂x j
,

(3)

where Et
1,2 are the electric fields at the fundamental frequencies

ω1,2 inside the medium (the fields of the refracted waves)
at the surface, and Ev

1,2 are the electric fields in vacuum
at the surface (they are the superpositions of the reflected
and of the incident waves); χ

(2)
i jk is the tensor of the local

quadratic optical susceptibility of the medium bulk; γ
(2)1
i jkl =

γ
(2)
i jkl(ω1 + ω2; ω1, ω2) and γ

(2)2
i jkl = γ

(2)
i jlk(ω1 + ω2; ω2, ω1);

here γ
(2)
i jkl(ω1 +ω2; ω1, ω2) is the tensor of spatial dispersion of

the quadratic optical response of the medium bulk (it describes
the nonlocality of the nonlinear optical response; the details
of the approach describing the spatial dispersion in terms of
such a tensor can be found in [17, 19, 26–28]). In general,
γ

(2)1
i jkl �= γ

(2)2
i jkl . We note that γ

(2)
i jkl(ω1 + ω2; ω1, ω2) does

not possess any permutation symmetry, connected with the
corresponding permutation of the frequency arguments in it
(unlike in χ

(2)
i jk (ω1 + ω2; ω1, ω2) = χ

(2)
ik j (ω1 + ω2; ω2, ω1)).

The structure of the tensors κ
(2)
jkl , χ

(2)
i jk and γ

(2)
i jkl is determined

by the symmetry properties of the isotropic chiral medium; the
non-zero components of these tensors for such a medium are
given in the appendix of this paper.

In order to obtain the expressions for the electromagnetic
field of the reflected wave at SF within the plane wave
approximation, and within the approximation of non-depleting
pump, we have to carry out the following steps. (a) We solve
the equations for the electromagnetic field at the surface of the
medium obtained from the conventional boundary conditions
(which coincide with the modified ones, when the nonlinear
polarization is zero and when we neglect the members of the
order of d0/λ and higher). Thus, we find the electric fields Et

1,2
at the surface inside the medium (refracted field) and Ev

1,2 at the
surface in vacuum (superposition of the incident and reflected
field). (b) We substitute these electric fields in equations (3)
and obtain the nonlinear polarization of the medium bulk and
the nonlinear response of the medium surface. Now we are
able to substitute the nonlinear polarization and the nonlinear
current density in the modified boundary conditions (1), which
contain the reflected electric field at SF in the left part of the
equations (in designations of (1) it appears as E3(1)). But there
is also another unknown value, namely the electric field at SF
inside the medium E3(2). In order to find it, (c) we solve the
wave equation with the nonlinear polarization of the medium
bulk in the right part for the plane wave E3(2), propagating
in the medium bulk. Finally (d) we substitute the quantities

found above (nonlinear polarization, nonlinear current density,
E3(2)) to the modified boundary conditions (1). In the case
of consideration of plane waves, (1) can be represented as
algebraic equations for E3(1). Thus, we find the reflected
plane wave at SF from these equations at the surface of the
medium. More details on steps (a)–(d) are given in [17], where
this method has been used.

Suppose now we are considering finite light beams instead
of plane waves, where the electromagnetic fields depend on
the coordinates in space. Now we are able to carry out the
same steps (a)–(d) when representing all the beams in this
task as the superpositions of their spatial Fourier harmonics.
In this case, when performing the steps (a)–(d), we will treat
the spatial Fourier harmonics of the incident, the reflected and
the refracted waves. Moreover, we assume that the angles of
divergence of the light beams at fundamental frequencies are
small and, therefore, the spatial Fourier harmonics propagating
at sufficiently large angle (comparable to 1 rad) relative to
the axis of any of the beams will have negligibly small
amplitudes. In this case, since the incident beams can be
represented in their reference frames as E1,2(r1,2, z1,2 = 0) =∫ ∫

Ẽ1,2(k1,2⊥) exp{ik1,2⊥r1,2} dk1,2⊥, we consider only small
values of the transversal components k1,2⊥ of the wavevectors
of the spatial Fourier harmonics, and we linearize all the
algebraic equations appearing in (a)–(d) with respect to these
components.

It is worth noticing that the nonlinear polarization and the
nonlinear current density in (3) containing the products of the
electric fields look like convolution products of these fields in
a Fourier representation with the variables of integration k1,2⊥.
Thus, (3) will represent the summation of all contributions
of all interacting pairs of the Fourier harmonics of the
fundamental waves, such that k1⊥ + k2⊥ = k3⊥. The latter
condition imposes a constraint on the variables of integration.

3. The solution of the problem for uniformly
polarized incident beams with Gaussian intensity
profiles

Let us consider two monochromatic elliptically polarized
Gaussian beams with small divergence angles such that the
effective sizes of their widths are much bigger than the
wavelength of light, w1,2 � λ1,2. These beams at frequencies
ω1,2 are falling onto the surface of the isotropic chiral medium,
as is illustrated in figure 1. We designate the angles of
incidence of these beams (i.e. the angles between the symmetry
axes of these beams and the perpendicular to the surface) as
θ1,2. The angle between the planes of incidence of these beams
is designated as α2. Let us choose the plane of incidence of
the first beam coinciding with the coordinate plane x�z� of
the reference frame x�y�z�, bounded with the surface (z�-
axis of this coordinate system is directed into the medium (see
figure 1) and it is perpendicular to the surface). Also each
beam will be associated with its ‘own’ reference frame (x1 y1z1

and x2 y2z2 correspondingly) as is shown for the first beam at
figure 1.

The positions of the centers of the waists of the
incident beams are chosen at {x1,2 = 0; y1,2 = 0; z1,2 = 0;}

3
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Figure 1. Scheme of the interaction of incident beams of radiation at
fundamental frequencies and the orientation of the reference frames,
attached to the incident and reflected beams, and to the surface.

correspondingly. Let these two points coincide with the zero
of the surface reference frame {x� = 0; y� = 0; z� = 0;}.
(Such an assumption is made only for clarifying the resulting
expressions. The shifts of the spot centers of incident beams
along the surface or along the axes of the beams can be
easily accounted for. It can be shown that they lead to the
weakening of the SF signal, to the shift of the center of
the reflected SF beam, and to additional distortions of the
transversal distribution of the light field at SF.)

In this case spatial distributions of the electric fields
in their ‘own’ reference frames are given by the following
expressions:

Em(xm, ym, zm) =
[

em + i

ki
1,2

e(m)
z (em · ∇)

]

× E0m

βm(zm)
exp

{−x2
m − y2

m

w2
mβm(zm)

− iωm t + iki
mzm

}

(4)

where m = 1, 2 indicates the first or second incident
beam, e(m)

z is the unit vector along the positive direction of
the zm axis of the corresponding reference frame, em are the
complex unit vectors (|em |2 = 1, em ⊥ e(m)

z ), defining the
polarization state of light in the incident beams, E0m are the
amplitudes of the electric field of the incident beams, ωm are
the fundamental frequencies, wm are the effective waists of the
fundamental beams, km = ωm/c, βm(zm) = 1+2izm/(ki

mw2
m).

The expression (4) also takes into account the longitudinal
components of the fields at fundamental frequencies E1,2.
Within the first-order approximation on the divergence angles
of the beams, the Maxwell equations div E1,2 = 0 in vacuum
for beams with Gaussian profiles can be satisfied only by taking
into account the longitudinal component of the electric field
(which is the first-order value).

In order to describe the polarization and the intensity of
the incident pump beams (as well as for any other beams)
it is convenient to use the following quantities: normalized
intensity of light I0m = (|Em+|2 + |Em−|2)/2, the ellipticity
degree of the polarization ellipse of light M0m = (|Em+|2 −

|Em−|2)/(|Em+|2 + |Em−|2), the angle of orientation of the
main axis of the polarization ellipse 
m = 1

2 Arg{Em+ E∗
m−}

and the angle of orientation of the electric field vector at
fixed timing �m = Arg{Em+ + E∗

m−}. In these definitions
Em± = Emx ± iEmy are the circularly polarized amplitudes
of the electric field. It is not difficult to show that the
polarization vector of the fundamental beams can be written

as em =
√

1−M0m
2 e−i
m e+ +

√
1+M0m

2 ei
m e−, where M0m

are the initial values of the degree of ellipticity of their
polarization ellipses, 
0m are the initial values of orientation
angles of their polarization ellipses and �m = 0 corresponds
to the uniform phase distributions. M0m change from −1
(circular polarization with counterclockwise rotation) to 1
(circular polarization with clockwise rotation) through 0 (linear
polarization), and 
0m vary from 0 to π (0 and π are
indistinguishable).

Before we start with steps (a)–(d) described above, we
obtain the Fourier representation of the transversal and the
longitudinal constituents of the electric fields of the incident
beams in their ‘own’ reference frames. Then we proceed
to the reference frame bounded to the surface and transform
all the quantities (the electric field and the wavevectors) in
a corresponding way (of course, at this stage we take into
account the dependence of spatial Fourier harmonics on the
coordinates z1 and z2 in x1 y1z1 and x2y2z2). At that, for any
Fourier harmonic of each of the two beams its wavevector is
given as ki

m = km⊥ + kmze(m)
z in xm ymzm . In x�y�z� the

component of this wavevector, parallel to the surface x�y�,
can be represented as the sum of a fixed value (ki

1 sin θ1ex and
ki

2 sin θ2(ex cos α2 + ey sin α2) correspondingly) and of some
small additive (k̃1⊥ and k̃2⊥ correspondingly), appearing due
to the non-collinearity of the Fourier harmonics of each of the
incident beams. We linearize all the equations respectively to
this small additive k̃1⊥ and k̃2⊥ (except for the real part of the
exponential index of the fields, where the first-order terms are
zero for Gaussian beams).

Then we proceed to stages (a)–(d), and after completing
them we switch to the reference frame of the reflected signal
beam (see figure 1) with corresponding transformation of
the electric field vector, wavevectors and coordinates. As
far as we suppose small divergence angles of the incident
beams, the propagation direction of the reflected SF beam
(and the orientation of the reference frame of this beam)
can be determined from the momentum conservation law for
the central plane wave Fourier harmonics of incident and
reflected beams. (Because non-central Fourier harmonics of
the beam at SF are generated by the non-central Fourier
harmonics of the fundamental beams, and they also (as in the
fundamental beams) constitute small angles with the direction
of propagation of the signal beam.) Thus, the orientation of
the reference frame associated with the reflected signal beam
is given by the angle of reflection:

sin θ3 = (ω2
1 sin2 θ1 + ω2

2 sin2 θ2

+ 2ω1ω2 sin θ1 sin θ2 cos α2)
1/2/(ω1 + ω2) (5)

between the perpendicular to the surface and the axis of the
beam, and by the angle

sin α3 = ω2 sin θ2 sin α2/ [(ω1 + ω2) sin θ3] (6)

4
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between the plane of reflection and the x�z� plane of the
surface reference frame (these angles are shown in figure 1).

Finally, we perform a reverse Fourier transform and obtain
the desirable formula for the spatial distribution of an electric
field in the cross section of the beam at SF (ω3 = ω1 + ω2) in
its ‘own’ reference frame xyz:

E3⊥(x, y, z, t) = IF(x, y, z) · e−iω3t+ikr
3 z[a3xex + a3yey

+ (a3xx (z)x + a3yx(z)y)ex + (a3xy(z)x + a3yy(z)y)ey]
(7)

where

IF(x, y, z) = π2 E01 E02w
2
1w

2
2√

D0 D′
0(z)

× exp

{−hx(z)x2 − hy(z)y2 + 2hxy xy

D′
0(z)

}

(8)

where, in its turn,

D0 = w4
1

cos2 θ1
+ w4

2

cos2 θ2

+ w2
1w

2
2

(
1

cos2 θ1
+ 1

cos2 θ2
+ tan2 θ1 tan2 θ2 sin2 α2

)

(9)

hx(z) = w2
1w

2
2

D0

{
w2

1[1 + sin2(α3 − α2) tan2 θ2]
cos2 θ1

+ w2
2[1 + sin2 α3 · tan2 θ1]

cos2 θ2

}

+ 2iz

kr
3

(10)

hy(z) = w2
1w

2
2 cos2 θ3

D0

{
w2

1[1 + cos2(α3 − α2) tan2 θ2]
cos2 θ1

+ w2
2[1 + cos2 α3 tan2 θ1]

cos2 θ2

}

+ 2iz

kr
3

(11)

hxy = cos θ3w
2
1w

2
2

2D0 cos2 θ1 cos2 θ2

× (w2
1 sin 2(α3 − α2) sin2 θ2 + w2

2 sin 2α3 sin2 θ1) (12)

D′
0(z) = w4

1w
4
2 cos2 θ3

D2
0 cos2 θ1 cos2 θ2

×
[

w4
1

cos2 θ1
+ w4

2

cos2 θ2
+ w2

1w
2
2 tan2 θ1 tan2 θ2 sin2 α2

]

− 4z2/(kr
3)

2 + (2iz/kr
3)[hx(0) + hy(0)]. (13)

Here kr
3 = ω3/c. It is worth remarking that (10) and (11) are

the linear functions of z, and (13) is the quadratic polynomial
one. Coefficients a3x,y are proportional to the zero order of the
divergence angle of the beam, and they depend on the geometry
of interaction of the incident beams, on their polarization
states, on the linear and nonlinear optical susceptibilities of
the medium bulk and surface. Coefficients a3xx(z), a3yx(z),
a3xy(z) and a3yy(z) are proportional to the first order of the
divergence angle of the beam. They also depend on all the
above-mentioned values, and moreover the expressions for
these coefficients include quantities (9)–(13) (i.e. they depend
on the propagation coordinate z and on the effective sizes of
the beam waists w1,2). Because the expressions for both types
of coefficients a3x,y and a3xx (z), a3yx(z), a3xy(z), a3yy(z) are
very cumbersome, they are presented in the appendix of this
paper.

4. The discussion of the obtained formulae. Analysis
of the transversal distribution of the light field in the
beam at sum-frequency

Before consideration of the new effects, it is necessary
to remark that in the limiting case of the plane wave
approximation (wm → ∞) for α2 = 0 the expression (7) is
completely analogous to the result of [17]. Considering the
particular case of second-harmonic generation and the normal
incidence of the pump beam, we obtain the results of [27, 28],
thoroughly studied there.

It follows from (7) and (8) that the transversal intensity
distribution in the beam at SF is the product of the elliptic
Gaussian distribution and the quadratic polynomial function
of the coordinates x and y. At first, let us consider the
part of the signal having zero order on the divergence angles
of the beams, i.e. the elliptic Gaussian distribution with
uniform distribution of the polarization state (determined by
the coefficients a3x,y ). It is necessary to remark here that
the plane wave approximation is not able to provide any
information on the transversal intensity distribution even in the
zero order on the divergence angle of the beam.

The ellipticity degree of the ellipses of equal intensity
and the orientation of these ellipses do not depend on
the polarization of incident beams and the nonlinear
susceptibilities of the medium and its surface. These
parameters of the intensity distribution are determined by the
geometry of interaction of the incident beams and by the ratios
of their frequencies and of their waists. They can be found
directly from the exponential index in (8). The angle between
one of the main axes of the ellipses of equal intensity and the
x axis of the beam reference frame does not depend on the
propagation coordinate (that is, the beam is not the rotating
one):

α = 1

2
arctan

{
2hxy

hy(0) − hx(0)

}

. (14)

The ratio of the semi-axes of the ellipses of equal intensity is
the following:

a(z)

b(z)
= hx(z) sin2 α + hy(z) cos2 α + 2hxy sin α cos α

hx(z) cos2 α + hy(z) sin2 α − 2hxy sin α cos α
.

(15)
Here the semi-axis a(z) constitutes the angle α with the x axis
and the semi-axis b(z) is perpendicular to a(z). In order to
describe the ellipticity degree of the intensity distribution, it is
more convenient to use and to analyze

MG(z) = 2 [a(z)/b(z) + b(z)/a(z)]−1 (16)

because 0 � MG(z) � 1 even if a(z)/b(z) → ∞ or
a(z)/b(z) → 0. If the ellipse tends to collapse and its shape
is close to a line, then MG(z) → 0. If the ellipse turns into a
circle, then MG(z) = 1.

Characteristic dependences of α and MG(z = 0) on the
angle of incidence θ1 for different values of α2 and for two
values of w2/w1 are shown in figure 2. Both the orientation
and the shape of the ellipses of equal intensity are changing
within the relatively broad range, depending on the geometry
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Figure 2. Dependences of the ellipticity degree MG(θ1, z = 0) (a)
and the rotation angle α(θ1) (b) of the elliptic Gaussian intensity
distribution; θ2 = 60◦; curves 1 and 4 correspond to α2 = 30◦; 2 and
5 correspond to α2 = 90◦; 3 and 6 correspond to α2 = 150◦. For 1, 2
and 3 w2/w1 = 1; for 4, 5 and 6 w2/w1 = 5.

of interaction and ratio of the waists of the incident beams even
if the beams are not tightly focused. The range of variation of
α and MG(z = 0) grows with the increase of any of the angles
of incidence. If one of the angles is equal to zero (for example,
θ1 = 0) there appears a symmetry plane in this task, coinciding
with the plane of incidence of the other beam. In this case, the
intensity distribution is also symmetric relative to this plane
and this means that α(θ1 = 0) = α(θ2 = 0) = 0, and that the
ellipticity degree MG(z) does not depend on α2. This fact can
also be seen from figure 2 (and it follows from (14) and (15)).

Now let us include into the consideration the first-order
(on the divergence angle) terms in (7). It can be shown that
the effective transversal size of the SF beam is of the order
of wSF = w1w2/

√
w2

1+w2
2. The order of the latter quantity is

the same as for w1,2, when these values are of the same order
(w1 ∼ w2). Otherwise, if w1 � w2 or w2 � w1, the wSF is
of the order of min(w1, w2). (It is worth noticing that in the
case of normal incidence of both beams (θ1,2 = 0) the effective
transversal size of the signal beam is equal to wSF.) Thus, due
to the exponential index in (8), the amplitude of the signal at SF
tends to zero if x � wSF or y � wSF and we should consider
x, y ∼ wSF or x, y < wSF in order to deal with the amplitude
of the signal significantly distinguishable from zero.

The divergence angles of the fundamental beams of
Gaussian profiles are approximately equal to λ1,2/(πw1,2) (this

appreciation is true for small angles). It can be shown (by
estimation of the expressions (A.1), (A.2), (A.7) and (A.8) in
the appendix) that, if x, y ∼ wSF, the ratios like a3i j(z)x/a3i

(i, j = x, y) are of the order of max(λ1/(πw1), λ2/(πw2)).
If (as it usually takes place) the rest of the quantities
in the coefficients a3i j(z) and a3i make contributions of
approximately the same order, then, for w1,2/λ1,2 � 10, the
non-Gaussian part of the field will be much less than the
Gaussian one. In this case it will act as a weak distortion of
the uniformly polarized elliptic Gaussian beam at SF. Such a
situation is illustrated in figure 3. The intensity distribution
in the cross section of the beam at SF shown in figure 3(a) is
elliptic Gaussian. The intensity in the figure is a normalized

quantity I (x, y) =
√

D0 D′
0(0)

π2 E01 E02w
2
1w

2
2κ

(2)
zxx

|E3⊥(x, y, 0, t)|2 for z = 0

in normalized coordinates x/wSF and y/wSF. Of course, the
signal is usually measured at some distance from the surface
of the medium, but we consider the simplest case in order
to avoid additional complexity, connected with the parabolic
increase of the oscillation phase during the propagation of the
beam in free space. Thus, we aim to demonstrate the main
features of the SF signal and of the transversal distributions
of its intensity and polarization. Figure 3(b) illustrates the
polarization distribution in the cross section of the reflected
beam. The ellipses in the figure show the polarization ellipses
in the corresponding points of the SF beam cross section. The
sum of squared axes of each ellipse is proportional to the
intensity of light at the point indicated by the ellipse. The
ellipticity degree and the angle of the orientation of the ellipses
in the figure correspond to the same characteristics of the
polarization ellipses. The spots at the contours of the ellipses
indicate the direction of the electric field vector at fixed timing
at t = kr

3z/ω3 (from the center of the ellipse to such a spot).
As can be seen from figure 3(b), the polarization is practically
uniformly distributed in the beam cross section, and it does not
change significantly during the propagation of the beam.

Let us now focus our attention on the question, whether
the first-order non-Gaussian part of the field is able to affect
significantly the structure of the beam at SF (apart from the
case of normal incidence of the pump beams)?

The analysis of the coefficients a3i j(z), a3i (i, j = x, y)
have shown that, in typical cases, their dependence on the
medium parameters, on the polarization of the fundamental
beams and their waists is not able to change the order of
their ratio. But the dependences of a3i j(z) and a3i on the
angles of incidence θ1 and θ2 are different. If we suppose
that θ1 and/or θ2 are tending to 90◦ in such a way that cos θ1

and/or cos θ2 become small, then a3i j(z) ∼ cos θ1/ cos θ2 +
cos θ2/ cos θ1 and a3i ∼ cos θ1 cos θ2. Thus, in this case
a3i j(z)wSF/a3i ∼ (1/ cos2 θ1 + 1/ cos2 θ2)λ1,2/(π w1,2). If
we make our appreciations for w1,2/λ1,2 = 10 and θ1,2 �
80◦, then it appears that |a3i j(z)wSF/a3i | > 1, and the
contribution of the non-Gaussian part of the field in this case
will seriously affect the structure of the beam. This situation
is very clear in figure 4, where the distributions of intensity
and of the polarization are shown for the case when one of
the angles of incidence is large enough (θ1 = 82◦). The
intensity distribution in figure 4(a) has several local extrema
and significantly differs from the Gaussian one, though the
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a b

Figure 3. The transversal distribution of the intensity (a) and of the polarization (b) in a sum-frequency beam. The intensity distribution is
elliptic Gaussian and the polarization almost does not change along the beam cross section. w2/w1 = 0.7, ω2/ω1 = 1.5, α2 = 180◦,
θ1 = θ2 = 60◦, M01 = −0.5, M02 = 0.8, 
1 = 60◦, 
2 = −30◦; n1 = 1.26, n2 = 1.3, n3 = 1.34; b2/b1 = 1.2, b3/b1 = 1, b4/b1 = 1.1,
b5/b1 = 2, b6/b1 = −2.2, b7/b1 = 0.6, γ1/b1 = 1.2, γ2/b1 = 0.8, γ3/b1 = 1.4, γ4/b1 = 0.5, χ/b1 = 1.

a b

Figure 4. The transversal distribution of the intensity (a) and of the polarization (b) in sum-frequency beam, when θ1 = 82◦, θ2 = 30◦.
The intensity distribution has non-Gaussian shape and the polarization significantly changes along the beam cross section. w2/w1 = 1,
ω2/ω1 = 1.5, α2 = 90◦, M01 = −0.4, M02 = 0.8, 
1 = 0, 
2 = 90◦; n1 = 1.26, n2 = 1.3, n3 = 1.34; b2/b1 = 1.2, b3/b1 = 0.5,
b4/b1 = 0.3, b5/b1 = 2, b6/b1 = −2.2, b7/b1 = 0.6, γ1/b1 = 1.2, γ2/b1 = 0.8, γ3/b1 = 1.4, γ4/b1 = 0.5, χ/b1 = 0.8.

divergence angles of the pump beams are small (about 2◦–
3◦). Moreover, they are several times smaller than the angle
between the direction of propagation of the first beam and the
surface of the medium (90◦ − θ1 = 8◦). As can be seen from
figure 4(b), the polarization distribution in such cases becomes
strongly inhomogeneous and the parameters of the polarization
ellipses of the light can differ significantly along the cross
section of the signal beam.

Generally, the exact values of the angles of incidence,
making the non-Gaussian part of the field of the order of the
Gaussian one, depend not only on the focusing of the incident
beams (the size of their waists). The values of these angles may
vary for about several degrees, conditioned by the values of the
other parameters of incident radiation and the medium. We
emphasize that for a non-Gaussian part of the field in order to
be comparable with the Gaussian part, it is enough for cos2 θ1,2

to be a small value (not necessary for cos θ1,2 itself). In certain
cases such a condition can be satisfied even for relatively
moderate values of θ1,2 < 80◦. In addition, in special cases,
relations between the medium parameters and/or geometry of
incidence may provide the disappearance of the response of
the medium of zero order on the divergence angles (or, at least,
these relations may make this response small enough). In such
a case this effect will not be connected directly with the values
of θ1,2. But such situations can hardly be described by certain
mathematical expressions in this task, and usually they are not
practically important.

The overall dependence of the transversal distribution of
the polarization in the signal beam on the components of the
tensors χ

(2)
i jk , γ

(2)
i jkl and κ

(2)
i jk is very complicated and a complete

description of this dependence is given in the appendix.
Generally, the expression for the electric field at SF (7) contains
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various linear combinations of all of the components of these
tensors with complex coefficients. These coefficients depend
on the geometry of incidence, polarization, frequencies and
waists of the incident beams, and on the refraction indexes of
the medium.

5. Conclusion

In our work we have obtained the analytical formula
completely describing the transversal spatial distribution of
the electric field in a light beam at sum-frequency generated
from the surface of an isotropic chiral medium by elliptically
polarized Gaussian beams at fundamental frequencies. This
formula was examined and conclusions were found on the
limitations of the applicability of the plane wave approximation
in this task. We have also studied the transversal structure of
the signal beam at sum-frequency for the arbitrary geometry of
the incidence of the fundamental beams.

It was established that in typical cases the intensity
distribution in the cross section of the signal beam is elliptic
Gaussian, and its shape (the ellipticity and the orientation)
significantly varies, depending on the geometry of the
incidence of the fundamental beams. In such cases the non-
Gaussian part of the field (which is always present in the
reflected beam at sum-frequency) is weak, compared with the
Gaussian one, and it introduces only small distortions in the
transversal distributions of the polarization and intensity.

However, for large values of at least one of the angles
of incidence of the pump beams (as a rule, �80◦) this
non-Gaussian part becomes comparable with the Gaussian
one (or even exceeds it). In such a case the intensity
distribution is more complicated and the polarization state of
light significantly changes along the beam cross section.

The knowledge about the features of the distribution of
the electric field vector in cross section of the beam at sum-
frequency provides the possibility of correct interpretation of
the experimentally measured mean value of polarization of the
signal beam. Also, as was shown in earlier work [28], the
studies of the transversal distribution of light polarization in
a signal beam provide additional information on the properties
of the investigated medium, which is very helpful in modern
problems of diagnostics, spectroscopy and characterization
of chiral materials. In particular, the three-wave mixing
methods can be useful for characterization of quadratic optical
susceptibilities of chiral metamaterials, which are able to
provide a prominent quadratic optical response even in the case
of surface interaction of the incident waves.

Appendix

The coefficients a3x,y in (7) are given by the following
expressions:

a3x = 4π[cos θ ′
3 · (S(0)

⊥ · e�
α3) + sin θ ′

3 · S(0)
z ]

cos θ ′
3 + n3 cos θ3

(A.1)

a3y = 4π([S(0)

⊥ × e�
α3] · e�

z )

n3 cos θ ′
3 + cos θ3

. (A.2)

Here n3 is the refraction index of the medium at frequency
ω3 = ω1 + ω2, θ ′

3 is the angle of refraction of the beam
at sum-frequency (the angle determined from the momentum
conservation law and the refraction of the central Fourier
harmonic of the refracted beam at SF), sin θ ′

3 = sin θ3/n3, e�
α3

is the unit vector within the plane x�y� (plane of the surface)
in the direction of the sum-frequency beam (constituting the
angle α3 with x� axis), e�

α3 = e�
x cos α3 + e�

y sin α3, where the
vectors e�

x,y,z are the unit vectors of the surface reference frame
x�y�z�. Vector S(0) is defined in the surface reference frame
x�y�z� and it contains a zero-order part (on the divergence
angle) of the nonlinear polarization and nonlinear current
density. S(0)

⊥ is the component of this vector, lying in x�y�,
S(0) = S(0)

⊥ + S(0)
z e�

z = S(0)
x e�

x + S(0)
y e�

y + S(0)
z e�

z . The vector
is defined as follows:

S(0) = 1

c
(i(0)

⊥ + n2
3i (0)

z e�
z )

+ ω3

n3ω3 cos θ ′
3 + n1ω1 cos θ ′

1 + n2ω2 cos θ ′
2

P(0). (A.3)

Angles θ ′
1,2 are the angles of refraction of the incident

beams, sin θ ′
1,2 = sin θ1,2/n1,2, where n1,2 are the refraction

indexes at ω1,2. In (A.3) i(0)
⊥ = i (0)

x e�
x + i (0)

y e�
y . The zero-order

parts of the nonlinear polarization and the nonlinear current
density are given by the following expressions:

i (0)
x = −b3a1xa2z − b4a1za

�
2x − b5a1ya2z + b6a1za

�
2y

i (0)
y = −b3a1ya2z − b4a1za

�
2y + b5a1xa2z − b6a1za

�
2x

i (0)
z = b7[a1ya�

2x − a1xa�
2y] − b2a1za2z − b1[a1xa�

2x + a1ya�
2y]

(A.4)

P(0) = 1

c

(
e�

x

{
χ[−a1ya2z/n2

2 + a�
2ya1z/n2

1]
+ i[a1xa�

2x + a1ya�
2y + a1za2z/n2

1n2
2]

× [(ω1/ω3)γ1 sin θ1 + (ω2/ω3)γ2 sin θ2 cos α2]
+ i γ3a1x(ω1/ω3)[a�

2x sin θ1 − a2zn1 cos θ ′
1/n2

2]
+ iγ4(ω2/ω3)a

�
2x[a1x sin θ2 cos α2 + a1y sin θ2 sin α2

− a1zn2 cos θ ′
2/n2

1]
} + e�

y

{
χ[a2za1x/n2

2 − a1za
�
2x/n2

1]
+ iγ2(ω2/ω3) × sin θ2 sin α2

× [a1xa�
2x + a1ya�

2y + a1za2z/n2
1n2

2]
+ iγ3(ω1/ω3)a1y[a�

2x sin θ1 − a2zn1 cos θ ′
1/n2

2]
+ iγ4(ω2/ω3)a

�
2y[a1x sin θ2 cos α2 + a1y sin θ2 sin α2

− a1zn2 cos θ ′
2/n2

1]
} + e�

z {χ[a1xa�
2y − a1ya�

2x]
+ i[a1xa�

2x + a1ya�
2y + a1za2z/n2

1n2
2]

× [n1(ω1/ω3)γ1 cos θ ′
1 + n2(ω2/ω3)γ2 cos θ ′

2]
− iγ3(ω1/ω3)a1z[a�

2x sin θ1 − n1a2z cos θ ′
1/n2

2]/n2
1

− iγ4(ω2/ω3)a2z[a1x sin θ2 cos α2

+ a1y sin θ2 sin α2 − a1zn2 cos θ ′
2/n2

1]/n2
2}

)
. (A.5)

In (A.4) the quantities b1,...,7 are 7 independent non-zero
components of the tensor of the quadratic optical response
of the medium surface κ

(2)

i jk ; the structure of this tensor is
determined by the symmetry group ∞ of the surface of the
chiral medium: b1 = κ(2)

zxx = κ(2)
zyy, b2 = κ(2)

zzz , b3 = κ(2)
yyz =

κ(2)
xxz , b4 = κ(2)

yzy = κ(2)
xzx , b5 = κ(2)

xyz = −κ(2)
yxz , b6 = −κ(2)

xzy =
κ(2)

yzx , b7 = κ(2)
zxy = −κ(2)

zyx .
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In (A.5) χ = c · χ(2)
xyz is proportional to the single non-

zero component of the tensor χ
(2)
i jk of the local quadratic optical

response of the bulk of the isotropic chiral medium; γ1,2 =
ω3γ

(2) 1,2
xxyy , γ3 = ω3γ

(2) 1
xyxy , γ4 = ω3γ

(2) 2
xyyx are the components

of the tensor of the spatial dispersion of the quadratic optical
response of the bulk of this medium. Coefficients ami , ami j

and a�
mi j in (A.4) and (A.5) (where m = 1, 2; i = x, y, z;

j = x, y) are defined as follows:

amy = 2 cos θmemy

nm cos θ ′
m + cos θm

amx = 2 cos θm cos θ ′
memx

nm cos θm + cos θ ′
m

amyy = sin θm · (n2
m − 1)

nm(nm cos θm + cos θ ′
m)

· 2 cos θmemx

nm cos θ ′
m + cos θm

amxx = 2 cos θmemx

nm cos θ ′
m + cos θm

×
[

−tg θm + n2
m − 1

nm(nm cos θm + cos θ ′
m)

×
(

2 sin θm + (n2
m tg θm + tg θ ′

m) sin2 θm

nm(nm cos θm + cos θ ′
m)

)

+ (1 − n2
m)tg θ ′

m

(nm cos θ ′
m + cos θm) cos2 θm

×
(

cos θm + (n2
m − 1) sin2 θm

nm(nm cos θm + cos θ ′
m)

)]

amxy = amy
(1 − n2

m)tg θ ′
m

(nm cos θ ′
m + cos θm) cos2 θm

amyx = −amy
(nm cos θ ′

m + cos θm) sin θm

nm(nm cos θm + cos θ ′
m)

amz = amx tg θ ′
mn2

m

a1zx = a1xx tg θ ′
1n2

1 + n1a1x

cos3 θ ′
1

a1zy = a1yx tg θ ′
1n2

1 + n1a1y

cos θ ′
1

a2zx = (a2xx cos α2 − a2yx sin α2)tg θ ′
2n2

2

+ n2(a2x cos α2 − a2y cos2 θ ′
2 sin α2)

cos3 θ ′
2

a2zy = (a2xx sin α2 + a2yx cos α2)tg θ ′
2n2

2

+ n2(a2x sin α2 − a2y cos2 θ ′
2 cos α2)

cos3 θ ′
2

a�
2x = a2x cos α2 − a2y sin α2

a�
2y = a2y cos α2 + a2x sin α2

a�
2xx = −(a2yx + a2xy) cos α2 sin α2

+ a2xx cos2 α2 + a2yy sin2 α2

a�
2yx = (a2xx − a2yy) cos α2 sin α2

+ a2yx cos2 α2 − a2xy sin2 α2

a�
2xy = (a2xx − a2yy) cos α2 sin α2

− a2yx sin2 α2 + a2xy cos2 α2

a�
2yy = (a2yx + a2xy) cos α2 sin α2

+ a2xx sin2 α2 + a2yy cos2 α2.

(A.6)

Coefficients a3 j x(z), a3 j y(z) ( j = x, y), describing the
quantities of the first order on the divergence angle of the beam
in (7) are more complex, than a3x,y :

a3 j x(z) = 4π cos θ ′
3(S

( j)
⊥ (z) · e�

α3)

cos θ ′
3 + n3 cos θ3

− 4π(S(0)
⊥ · e�

α3)g( j)(z)

kr
3 cos θ3

×
[

tan θ3 − tan θ ′
3

(n3 cos θ ′
3 + cos θ3)2

+ sin2 θ ′
3

tan θ ′
3 − n2

3 tan θ3

(cos θ ′
3 + n3 cos θ3)2

+ sin2 θ3 cos θ ′
3 tan θ3

cos θ ′
3 + n3 cos θ3

+ (1 + sin2 θ3) sin θ ′
3

cos θ ′
3 + n3 cos θ3

]

− (f( j)(z) · S(0)
⊥ )

× 4π(1 − n2
3) sin θ ′

3

kr
3(cos θ ′

3 + n3 cos θ3)(n3 cos θ ′
3 + cos θ3)

+ S( j)
z (z) × 4π sin θ ′

3

cos θ ′
3 + n3 cos θ3

+ 4π S(0)
z g( j)(z)

kr
3n3(cos θ ′

3 + n3 cos θ3)

[

1 + sin2 θ3 + (n3 cos2 θ ′
3

× sin θ3 + sin θ ′
3 − n2

3 cos θ ′
3 tan θ3 sin2 θ3)

× tan θ ′
3

cos θ ′
3 + n3 cos θ3

]

+ 4π(tan θP
3 + tan θ ′

3)ω
2
3g( j)(z)

(n3ω3 cos θ ′
3 + n1ω1 cos θ ′

1 + n2ω2 cos θ ′
2)

2kr
3 cos θ3

×
[

P(0)
z × cos θ3 sin θ ′

3

cos θ ′
3 + n3 cos θ3

+ (P(0)
⊥ · e�

α3)
cos θ ′

3 cos2 θ3 + n3 cos θ3 cos2 θ ′
3

(cos θ ′
3 + n3 cos θ)(n3 cos θ ′

3 + cos θ3)

]

(A.7)

a3 j y(z) = − 4π

n3 cos θ ′
3 + cos θ3

×
[

(e�
z · [e�

α3 × S( j)
⊥ (z)]) − (e�

z · [e�
α3 × S(0)

⊥ ])

× g( j)(z)
tan θ3 − tan θ ′

3

kr
3(n3 cos θ ′

3 + cos θ3)

]

+ 4π(e�
z · [e�

α3 × f( j)(z)])
kr

3n3(cos θ ′
3 + n3 cos θ3)

× [(e�
α3 · S(0)

⊥ ) sin θ3 − S(0)
z cos θ3]

− 4π(tan θP
3 + tan θ ′

3)g( j)(z)

kr
3(n3 cos θ ′

3 + cos θ3)

× ω2
3(e

�
z · [e�

α3 × P(0)
⊥ ])

(n3ω3 cos θ ′
3 + n1ω1 cos θ ′

1 + n2ω2 cos θ ′
2)

2
. (A.8)

Here the angle θP
3 determines the propagation direction of

the wave of medium polarization (inside the medium). It is
determined by the expression

sin θP
3 = {ω3 sin θ3}{((n1ω1)

2 + (n2ω2)
2

+ 2n1n2ω1ω2(cos θ ′
1 cos θ ′

2 + sin θ ′
1 sin θ ′

2 cos α2))}−1/2.

(A.9)
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All the dependences on z are contained in the functions
g( j)(z) and f( j)(z), incorporated in all the other quantities,
which depend on z (they also appear in S( j)(z)). These
functions, in their turn, contain these dependences through
the quantities hx(z) and D′

0(z) given by the expressions (10)
and (13) in the main body of the paper:

g(x)(z) = −[2i/D′
0(z)]hx(z) cos θ3,

g(y)(z) = [2i/D′
0(z)]hxy cos θ3,

f(x)(z) = [2i/D′
0(z)]hxy[e�

z × e�
α3] + g(x)(z)e�

α3,

f(y)(z) = g(y)(z)e�
α3 + 2i

D′
0(z) − h2

xy

D′
0(z)hx(z)

[e�
z × e�

α3].

(A.10)

The quantity S( j)(z) is defined analogously to S(0) and
it contains the vectors P( j)(z) and i( j)(z), which are directly
connected with the first-order parts of nonlinear polarization
and nonlinear current density:

S( j)(z) = 1

c
(i( j)

⊥ (z) + n2
3i( j)

z (z)e�
z )

+ ω3

n3ω3 cos θ ′
3 + n1ω1 cos θ ′

1 + n2ω2 cos θ ′
2

P( j)(z).

(A.11)

These quantities P( j)(z) and i( j)(z) are coefficients
before the coordinates in the corresponding linear coordinate
dependences of the first-order parts of the nonlinear
polarization and nonlinear current density (in the reference
frame of the reflected beam). These coefficients (depending
on z) are given by the following expressions:

i( j)(z) = i( j)
⊥ (z) + i( j)

z (z)e�
z

= i( j)
x (z)e�

x + i( j)
y (z)e�

y + i( j)
z (z)e�

z

P( j)(z) = P( j)
loc(z) + P( j)

nloc1(z) + P( j)
nloc2(z) + P( j)

nloc3(z).

(A.12)

The corresponding constituents of (A.12) are given as follows:

P( j)
loc(z) = χ(2)

xyz

{[−(a2z/n2
2)A( j)

1y (z) − (a1y/n2
2)A( j)

2x (z)

+ (a1z/n2
1)A2y(z) + (a�

2y/n2
1)A( j)

1z (z)]e�
x

+ [−(a1z/n2
1)A( j)

2x (z) − (a�
2x/n2

1)A( j)
1z (z)

+ (a2z/n2
2)A( j)

1x (z) + (a1x/n2
2)A( j)

2z (z)]e�
y

+ [a1x A( j)
2y (z) + a�

2y A( j)
1x (z)

− a1y A( j)
2x (z) − a�

2x A( j)
1y (z)]e�

z

}
(A.13)

P( j)
nloc1(z) = (i/c)

{[((ω1/ω3)γ1 sin θ1

+ (ω2/ω3)γ2 sin θ2 cos α2)e�
x

+ (ω2/ω3)γ2 sin θ2 sin α2e�
y

+ ((ω1/ω3)n1γ1 cos θ ′
1 + (ω2/ω3)n2γ2

× cos θ ′
2)e

�
z ][a1x A( j)

2x (z) + a�
2x A( j)

1x (z)

+ a1y A( j)
2y (z) + a�

2y A( j)
1y (z)

+ [a1z A( j)
2z (z) + a2z A( j)

1z (z)]/(n1n2)
2]

+ [{ f ( j)
x (z)γ1 + α( j)

x (z)(γ2 − γ1)}e�
x

+ { f ( j)
y (z)γ2 + α( j)

y (z)(γ2 − γ1)}e�
y

+ {− tan θ ′
1 · γ1( f ( j)

x (z) − α( j)
x (z))

− tan θ ′
2 · γ2(α

( j)
x (z) cos α2 − α( j)

y (z) sin α2)}e�
z ]

× [a1xa�
2x + a1ya�

2y + a1za2z/(n1n2)
2]/kr

3

}
(A.14)

P( j)
nloc2(z) = [iγ3/c]{[(ω1/ω3) sin θ1 A( j)

2x (z)

+ a�
2x[ f ( j)

x (z) − α( j)
x (z)]/kr

3

+ a�
2y[ f ( j)

y (z) − α( j)
y (z)]/kr

3

− cos θ ′
1 A( j)

2z (z)(n1ω1)/(n
2
2ω3) + a2z tan θ ′

1

× [ f ( j)
x (z) − α( j)

x (z)]/(kr
3n2

2)]
× [a1xe�

x + a1ye�
y − (a1z/n2

1)e
�
z ]

+ (ω1/ω3)[a�
2x sin θ1 − a2z(n1/n2

2) cos θ ′
1]

× [A( j)
1x (z)e�

x + A( j)
1y (z)e�

y − (A( j)
1z (z)/n2

1)e
�
z ]} (A.15)

P( j)
nloc3(z) = [iγ4/c]{[(ω2/ω3) sin θ2 cos α2 A( j)

1x (z)

+ a1xα
( j)
x (z)/kr

3 + (ω2/ω3) sin θ2 sin α2 A( j)
1y (z)

+ a1yα
( j)
y (z)/kr

3 − cos θ ′
2 A( j)

1z (z)

× (n2ω2)/(n
2
1ω3) + a1z tan θ ′

2

× [α( j)
x (z) cos α2 + α( j)

y (z) sin α2]/(kr
3n2

1)]
× [a�

2xe�
x + a�

2ye�
y − (a2z/n2

2)e
�
z ]

+ (ω2/ω3)[a1x sin θ2 cos α2

+ a1y sin θ2 sin α2 − a1z(n2/n2
1) cos θ ′

2]
× [A( j)

2x (z)e�
x + A( j)

2y (z)e�
y − (A( j)

2z (z)/n2
2)e

�
z ]} (A.16)

i ( j)
x (z) = −{b3[a1x A( j)

2z (z) + a2z A( j)
1x (z)]

+ b4[a1z A( j)
2x (z) + a�

2x A( j)
1z (z)]

+ b5[a1y A( j)
2z (z) + a2z A( j)

1y (z)]
− b6[a1z A( j)

2y (z) + a�
2y A( j)

1z (z)]} (A.17)

i ( j)
y (z) = −{b3[a1y A( j)

2z (z) + a2z A( j)
1y (z)]

+ b4[a1z A( j)
2y (z) + a�

2y A( j)
1z (z)]

− b5[a1x A( j)
2z (z) + a2z A( j)

1x (z)]
+ b6[a1z A( j)

2x (z) + a�
2x A( j)

1z (z)]} (A.18)

i ( j)
z (z) = −{b7[a�

2y A( j)
1x (z) + a1x A( j)

2y (z)

− a�
2x A( j)

1y (z) − a1y A( j)
2x (z)] + b2[a2z A( j)

1z (z)

+ a1z A( j)
2z (z)] + b1[a�

2x A( j)
1x (z)

+ a1x A( j)
2x (z) + a�

2y A( j)
1y (z) + a1y A( j)

2y (z)]}. (A.19)

New auxiliary coefficients in (A.13)–(A.19) are defined in
the following way ( j = x, y; i = x, y):

α( j)
x (z) = f ( j)

y (z)w2
1w

2
2 sin α2 cos α2

× tan2 θ2/D0 − f ( j)
x (z)w2

1[w2
1 + w2

2(1 +
+ sin2 α2 tan2 θ2)]/(D0 cos2 θ1) (A.20)

α( j)
y (z) = f ( j)

y (z)
w2

1(w
4
2 sin2 α2 cos2 α2 tan4 θ2 − D0)

D0[w2
1 + w2

2(1 + sin2 α2 tan2 θ2)]
− f ( j)

x (z)w2
1[w2

1 + w2
2(1 +

+ sin2 α2 tan2 θ2)]/(D0 cos2 θ1) (A.21)

10



J. Opt. A: Pure Appl. Opt. 11 (2009) 074008 V A Makarov and I A Perezhogin

A( j)
1i (z) = (a1xi [ f ( j)

x (z) − α( j)
x (z)]

+ a1yi [ f ( j)
y (z) − α( j)

y (z)])/ki
1 (A.22)

A( j)
1z (z) = (a1zx[ f ( j)

x (z) − α( j)
x (z)]

+ a1zy[ f ( j)
y (z) − α( j)

y (z)])/ki
1 (A.23)

A( j)
2i (z) = (a�

2xiα
( j)
x (z) + a�

2yiα
( j)
y (z))/ki

2 (A.24)

A( j)
2z (z) = (a�

2zxα
( j)
x (z) + a�

2zyα
( j)
y (z))/ki

2. (A.25)
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